Eat Study Love

먹고 공부하고 사랑하라

Coding_Practice

Median of Two Sorted Arrays[H,Array,Binary Search,Divide and Conquer]

eatplaylove 2024. 8. 12. 21:20

https://leetcode.com/problems/median-of-two-sorted-arrays/description/

Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.

The overall run time complexity should be O(log (m+n)).

 

Example 1:

Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.

Example 2:

Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.

 

Constraints:

  • nums1.length == m
  • nums2.length == n
  • 0 <= m <= 1000
  • 0 <= n <= 1000
  • 1 <= m + n <= 2000
  • -106 <= nums1[i], nums2[i] <= 106

1. C

멘탈이 나간다 나가~~

double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) {
    double ans;
    int i = 0;
    int j = 0;
    int idx = 0;
    int* sort = (int*)malloc((nums1Size+nums2Size)*sizeof(int));
    while(i<nums1Size && j<nums2Size){
        if(nums1[i]<nums2[j]){
            sort[idx++] = nums1[i++];
        }else{
            sort[idx++] = nums2[j++];
        }
    }
    if(i==nums1Size){
        while(j!=nums2Size){
            sort[idx++] = nums2[j++];
        }
    }else{
        while(i!=nums1Size){
            sort[idx++] = nums1[i++];        
        }
    }
    if(idx%2==1){ //sort -> add num
        int med = idx/2;
        ans = sort[med];
    }else{
        int med = idx/2;
        ans = (sort[med]+sort[med-1])/2.0;
    }
    free(sort);
    return ans;
}

 

코드를 짰지만 이건 log(M+N)을 만족하지 않고 O(M+N)의 방식이다.

 

뭐든 time을 log단위로 가져오려면, Binary Search를 써야한다.

 

그리고 문제의 Topic처럼 Divide&Conquer을 쓰는 것이 바람직하다.

double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) {
    // nums1은 항상 크기가 작은 배열이 되도록 합니다.
    if (nums1Size > nums2Size) {
        return findMedianSortedArrays(nums2, nums2Size, nums1, nums1Size);
    }

    int x = nums1Size;
    int y = nums2Size;
    int low = 0, high = x;
    
    while (low <= high) {
        int partitionX = (low + high) / 2;
        int partitionY = (x + y + 1) / 2 - partitionX;

        int maxX = (partitionX == 0) ? INT_MIN : nums1[partitionX - 1];
        int maxY = (partitionY == 0) ? INT_MIN : nums2[partitionY - 1];

        int minX = (partitionX == x) ? INT_MAX : nums1[partitionX];
        int minY = (partitionY == y) ? INT_MAX : nums2[partitionY];

        if (maxX <= minY && maxY <= minX) {
            // 우리는 정확한 값을 찾았습니다.
            if ((x + y) % 2 == 0) {
                return ((double)fmax(maxX, maxY) + (double)fmin(minX, minY)) / 2;
            } else {
                return (double)fmax(maxX, maxY);
            }
        } else if (maxX > minY) {
            high = partitionX - 1;
        } else {
            low = partitionX + 1;
        }
    }

    // 입력이 잘못된 경우
    return -1;
}

 

위와 같이 어떻게 푸냐 이거야..;;

 

2. C++

# C++ - binary search
class Solution {
public:
    double findMedianSortedArrays(vector<int> &nums1, vector<int> &nums2) {
        int n1 = nums1.size(), n2 = nums2.size();
        
        // Ensure nums1 is the smaller array for simplicity
        if (n1 > n2)
            return findMedianSortedArrays(nums2, nums1);
        
        int n = n1 + n2;
        int left = (n1 + n2 + 1) / 2; // Calculate the left partition size
        int low = 0, high = n1;
        
        while (low <= high) {
            int mid1 = (low + high) >> 1; // Calculate mid index for nums1
            int mid2 = left - mid1; // Calculate mid index for nums2
            
            int l1 = INT_MIN, l2 = INT_MIN, r1 = INT_MAX, r2 = INT_MAX;
            
            // Determine values of l1, l2, r1, and r2
            if (mid1 < n1)
                r1 = nums1[mid1];
            if (mid2 < n2)
                r2 = nums2[mid2];
            if (mid1 - 1 >= 0)
                l1 = nums1[mid1 - 1];
            if (mid2 - 1 >= 0)
                l2 = nums2[mid2 - 1];
            
            if (l1 <= r2 && l2 <= r1) {
                // The partition is correct, we found the median
                if (n % 2 == 1)
                    return max(l1, l2);
                else
                    return ((double)(max(l1, l2) + min(r1, r2))) / 2.0;
            }
            else if (l1 > r2) {
                // Move towards the left side of nums1
                high = mid1 - 1;
            }
            else {
                // Move towards the right side of nums1
                low = mid1 + 1;
            }
        }
        
        return 0; // If the code reaches here, the input arrays were not sorted.
    }
};

 

3. Python

#Python - binary search
class Solution:
    def findMedianSortedArrays(self, nums1, nums2):
        n1 = len(nums1)
        n2 = len(nums2)
        
        # Ensure nums1 is the smaller array for simplicity
        if n1 > n2:
            return self.findMedianSortedArrays(nums2, nums1)
        
        n = n1 + n2
        left = (n1 + n2 + 1) // 2 # Calculate the left partition size
        low = 0
        high = n1
        
        while low <= high:
            mid1 = (low + high) // 2 # Calculate mid index for nums1
            mid2 = left - mid1 # Calculate mid index for nums2
            
            l1 = float('-inf')
            l2 = float('-inf')
            r1 = float('inf')
            r2 = float('inf')
            
            # Determine values of l1, l2, r1, and r2
            if mid1 < n1:
                r1 = nums1[mid1]
            if mid2 < n2:
                r2 = nums2[mid2]
            if mid1 - 1 >= 0:
                l1 = nums1[mid1 - 1]
            if mid2 - 1 >= 0:
                l2 = nums2[mid2 - 1]
            
            if l1 <= r2 and l2 <= r1:
                # The partition is correct, we found the median
                if n % 2 == 1:
                    return max(l1, l2)
                else:
                    return (max(l1, l2) + min(r1, r2)) / 2.0
            elif l1 > r2:
                # Move towards the left side of nums1
                high = mid1 - 1
            else:
                # Move towards the right side of nums1
                low = mid1 + 1
        
        return 0 # If the code reaches here, the input arrays were not sorted.