# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
ans = []
self.dfs(root, ans, 0)
return ans
def dfs(self, node, ans, lv):
if not node:
return
# 새 레벨이 추가될 때만 빈 리스트를 추가
if len(ans) == lv:
ans.append([])
ans[lv].append(node.val)
self.dfs(node.left, ans, lv + 1)
self.dfs(node.right, ans, lv + 1)
https://leetcode.com/problems/binary-tree-level-order-traversal/description/
Given the root of a binary tree, return the level order traversal of its nodes' values. (i.e., from left to right, level by level).
Example 1:
Input: root = [3,9,20,null,null,15,7]
Output: [[3],[9,20],[15,7]]
Example 2:
Input: root = [1]
Output: [[1]]
Example 3:
Input: root = []
Output: []
Constraints:
- The number of nodes in the tree is in the range [0, 2000].
- -1000 <= Node.val <= 1000
Binary Tree Traversal 문제이다.
1. C
아 malloc 하는게 너무나 구찮다..
GG
#include <stdio.h>
#include <stdlib.h>
// 이진 트리 노드 구조체 정의
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
};
int** levelOrder(struct TreeNode* root, int** columnSizes, int* returnSize) {
if (root == NULL) {
*returnSize = 0;
return NULL;
}
// 메모리 초기화
int maxNodes = 1000; // 트리 노드의 최대 개수에 맞춰 배열 크기 지정
struct TreeNode** queue = (struct TreeNode**)malloc(maxNodes * sizeof(struct TreeNode*));
int** result = (int**)malloc(maxNodes * sizeof(int*));
*columnSizes = (int*)malloc(maxNodes * sizeof(int));
int front = 0, rear = 0;
*returnSize = 0;
// 루트 노드를 큐에 추가
queue[rear++] = root;
while (front < rear) {
int levelSize = rear - front; // 현재 레벨에 있는 노드의 수
result[*returnSize] = (int*)malloc(levelSize * sizeof(int));
(*columnSizes)[*returnSize] = levelSize;
for (int i = 0; i < levelSize; i++) {
struct TreeNode* node = queue[front++];
result[*returnSize][i] = node->val;
if (node->left != NULL) {
queue[rear++] = node->left;
}
if (node->right != NULL) {
queue[rear++] = node->right;
}
}
(*returnSize)++;
}
free(queue);
return result;
}
2. C++이 찐텐이다.
어디서 본 친구들이라 수월하게 풀었다.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
queue<TreeNode*> q;
vector<vector<int>> ans;
if(!root) return ans;
q.push(root);
while(!q.empty()){
int lv = q.size();
vector<int> temp;
for(int i=0;i<lv;i++){
TreeNode* curr = q.front();
q.pop();
temp.push_back(curr->val);
if(curr->left) q.push(curr->left);
if(curr->right) q.push(curr->right);
}
ans.push_back(temp);
}
return ans;
}
};
3. Python DFS로 재귀적인 풀이 가보자
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
ans = []
self.dfs(root, ans, 0)
return ans
def dfs(self, node, ans, lv):
if not node:
return
# 새 레벨이 추가될 때만 빈 리스트를 추가
if len(ans) == lv:
ans.append([])
ans[lv].append(node.val)
self.dfs(node.left, ans, lv + 1)
self.dfs(node.right, ans, lv + 1)